Bitte haben Sie einen Moment Geduld, wir legen Ihr Produkt in den Warenkorb.
Bitte haben Sie einen Moment Geduld, wir legen Ihr Produkt in den Warenkorb.
| Reihe | Springer Theses | 
|---|---|
| ISBN | 9783030075187 | 
| Sprache | Englisch | 
| Erscheinungsdatum | 25.01.2019 | 
| Genre | Technik/Sonstiges | 
| Verlag | Springer International Publishing | 
| Lieferzeit | Lieferbar in 6 Werktagen | 
| Herstellerangaben | Anzeigen   Springer Nature Customer Service Center GmbH ProductSafety@springernature.com  | 
This book describes efforts to improve subject-independent automated classification techniques using a better feature extraction method and a more efficient model of classification. It evaluates three popular saliency criteria for feature selection, showing that they share common limitations, including time-consuming and subjective manual de-facto standard practice, and that existing automated efforts have been predominantly used for subject dependent setting. It then proposes a novel approach for anomaly detection, demonstrating its effectiveness and accuracy for automated classification of biomedical data, and arguing its applicability to a wider range of unsupervised machine learning applications in subject-independent settings.
| Reihe | Springer Theses | 
|---|---|
| ISBN | 9783030075187 | 
| Sprache | Englisch | 
| Erscheinungsdatum | 25.01.2019 | 
| Genre | Technik/Sonstiges | 
| Verlag | Springer International Publishing | 
| Lieferzeit | Lieferbar in 6 Werktagen | 
| Herstellerangaben | Anzeigen   Springer Nature Customer Service Center GmbH ProductSafety@springernature.com  | 
Wie gefällt Ihnen unser Shop?