Data-Driven Modelling of Non-Domestic Buildings Energy Performance

Supporting Building Retrofit Planning
€ 142.99
Lieferbar in 14 Tagen
Kurzbeschreibung des Verlags:

This book outlines the data-driven modelling of building energy performance to support retrofit decision-making. It explains how to determine the appropriate machine learning (ML) model, explores the selection and expansion of a reasonable dataset and discusses the extraction of relevant features and maximisation of model accuracy.
This book develops a framework for the quick selection of a ML model based on the data and application. It also proposes a method for optimising ML models for forecasting buildings energy loads by employing multi-objective optimisation with evolutionary algorithms. The book then develops an energy performance prediction model for non-domestic buildings using ML techniques, as well as utilising a case study to lay out the process of model development. Finally, the book outlines a framework to choose suitable artificial intelligence methods for modelling building energy performances.
This book is of use to both academics and practising energy engineers, as it provides theoretical and practical advice relating to data-driven modelling for energy retrofitting of non-domestic buildings.

Mehr Informationen
ReiheGreen Energy and Technology
ISBN 9783030647537
Sprache Englisch
Ausgabe 1st ed. 2021
Erscheinungsdatum 16.01.2022
Umfang 153 Seiten
Genre Technik/Wärmetechnik, Energietechnik, Kraftwerktechnik
Format Taschenbuch
Verlag Springer International Publishing
Diese Produkte könnten Sie auch interessieren:
Vahid Vahidinasab, Behnam Mohammadi-Ivatloo
€ 164,99
Augustine O. Ayeni, Olagoke Oladokun, Oyinkepreye David Orodu
€ 164,99
Saad Motahhir, Ali M. Eltamaly
€ 142,99
Mohamed Lahby, Ala Al-Fuqaha, Yassine Maleh
€ 153,99
Kathryn G. Logan, Astley Hastings, John D. Nelson
€ 131,99
Adriano Bisello, Daniele Vettorato, Håvard Haarstad, Judith Borsboom-van...
€ 60,49
Ali M. Eltamaly, Almoataz Y. Abdelaziz, Ahmed G. Abo-Khalil
€ 142,99