Bitte haben Sie einen Moment Geduld, wir legen Ihr Produkt in den Warenkorb.
Bitte haben Sie einen Moment Geduld, wir legen Ihr Produkt in den Warenkorb.
Reihe | Springer Theses |
---|---|
ISBN | 9783030903459 |
Sprache | Englisch |
Erscheinungsdatum | 04.02.2023 |
Genre | Technik/Elektronik, Elektrotechnik, Nachrichtentechnik |
Verlag | Springer International Publishing |
Lieferzeit | Lieferbar in 6 Tagen |
Herstellerangaben | Anzeigen Springer Nature Customer Service Center GmbH ProductSafety@springernature.com |
This book describes a user-friendly, evolutionary algorithms-based framework for estimating data-driven models for a wide class of dynamical systems, including linear and nonlinear ones. The methodology addresses the problem of automating the process of estimating data-driven models from a user’s perspective. By combining elementary building blocks, it learns the dynamic relations governing the system from data, giving model estimates with various trade-offs, e.g. between complexity and accuracy. The evaluation of the method on a set of academic, benchmark and real-word problems is reported in detail. Overall, the book offers a state-of-the-art review on the problem of nonlinear model estimation and automated model selection for dynamical systems, reporting on a significant scientific advance that will pave the way to increasing automation in system identification.
Reihe | Springer Theses |
---|---|
ISBN | 9783030903459 |
Sprache | Englisch |
Erscheinungsdatum | 04.02.2023 |
Genre | Technik/Elektronik, Elektrotechnik, Nachrichtentechnik |
Verlag | Springer International Publishing |
Lieferzeit | Lieferbar in 6 Tagen |
Herstellerangaben | Anzeigen Springer Nature Customer Service Center GmbH ProductSafety@springernature.com |
Wie gefällt Ihnen unser Shop?