Bitte haben Sie einen Moment Geduld, wir legen Ihr Produkt in den Warenkorb.
Bitte haben Sie einen Moment Geduld, wir legen Ihr Produkt in den Warenkorb.
| Reihe | Synthesis Lectures on Mathematics & Statistics |
|---|---|
| ISBN | 9783031012907 |
| Sprache | Englisch |
| Erscheinungsdatum | 12.06.2019 |
| Genre | Mathematik |
| Verlag | Springer International Publishing |
| Lieferzeit | Lieferbar in 6 Werktagen |
| Herstellerangaben | Anzeigen Springer Nature Customer Service Center GmbH ProductSafety@springernature.com |
The inverse obstacle scattering problem consists of finding the unknown surface of a body (obstacle) from the scattering ���(����;����;����), where ����(����;����;����) is the scattering amplitude, ����;���� ���� ����² is the direction of the scattered, incident wave, respectively, ����² is the unit sphere in the ℝ³ and k > 0 is the modulus of the wave vector. The scattering data is called non-over-determined if its dimensionality is the same as the one of the unknown object. By the dimensionality one understands the minimal number of variables of a function describing the data or an object. In an inverse obstacle scattering problem this number is 2, and an example of non-over-determined data is ����(����) := ����(����;����₀;����₀). By sub-index 0 a fixed value of a variable is denoted.
It is proved in this book that the data ����(����), known for all ���� in an open subset of ����², determines uniquely the surface ���� and the boundary condition on ����. This condition can be the Dirichlet, or the Neumann, or the impedance type.
The above uniqueness theorem is of principal importance because the non-over-determined data are the minimal data determining uniquely the unknown ����. There were no such results in the literature, therefore the need for this book arose. This book contains a self-contained proof of the existence and uniqueness of the scattering solution for rough surfaces.
| Reihe | Synthesis Lectures on Mathematics & Statistics |
|---|---|
| ISBN | 9783031012907 |
| Sprache | Englisch |
| Erscheinungsdatum | 12.06.2019 |
| Genre | Mathematik |
| Verlag | Springer International Publishing |
| Lieferzeit | Lieferbar in 6 Werktagen |
| Herstellerangaben | Anzeigen Springer Nature Customer Service Center GmbH ProductSafety@springernature.com |
Wie gefällt Ihnen unser Shop?