Bitte haben Sie einen Moment Geduld, wir legen Ihr Produkt in den Warenkorb.
Bitte haben Sie einen Moment Geduld, wir legen Ihr Produkt in den Warenkorb.
| Reihe | Springer Theses |
|---|---|
| ISBN | 9783319120805 |
| Sprache | Englisch |
| Erscheinungsdatum | 27.11.2014 |
| Genre | Geowissenschaften/Sonstiges |
| Verlag | Springer International Publishing |
| Lieferzeit | Lieferbar in 11 Werktagen |
| Herstellerangaben | Anzeigen Springer Nature Customer Service Center GmbH ProductSafety@springernature.com |
This thesis transforms satellite precipitation estimation through the integration of a multi-sensor, multi-channel approach to current precipitation estimation algorithms, and provides more accurate readings of precipitation data from space.
Using satellite data to estimate precipitation from space overcomes the limitation of ground-based observations in terms of availability over remote areas and oceans as well as spatial coverage. However, the accuracy of satellite-based estimates still need to be improved.
The approach introduced in this thesis takes advantage of the recent NASA satellites in observing clouds and precipitation. In addition, machine-learning techniques are also employed to make the best use of remotely-sensed "big data." The results provide a significant improvement in detecting non-precipitating areas and reducing false identification of precipitation.
| Reihe | Springer Theses |
|---|---|
| ISBN | 9783319120805 |
| Sprache | Englisch |
| Erscheinungsdatum | 27.11.2014 |
| Genre | Geowissenschaften/Sonstiges |
| Verlag | Springer International Publishing |
| Lieferzeit | Lieferbar in 11 Werktagen |
| Herstellerangaben | Anzeigen Springer Nature Customer Service Center GmbH ProductSafety@springernature.com |
Wie gefällt Ihnen unser Shop?