Bitte haben Sie einen Moment Geduld, wir legen Ihr Produkt in den Warenkorb.
Bitte haben Sie einen Moment Geduld, wir legen Ihr Produkt in den Warenkorb.
Reihe | Lecture Notes in Mathematics |
---|---|
ISBN | 9783319721781 |
Sprache | Englisch |
Erscheinungsdatum | 07.02.2018 |
Genre | Mathematik/Analysis |
Verlag | Springer International Publishing |
Lieferzeit | Lieferbar in 6 Tagen |
Herstellerangaben | Anzeigen Springer Nature Customer Service Center GmbH ProductSafety@springernature.com |
The focus of this book is on open conformal dynamical systems corresponding to the escape of a point through an open Euclidean ball. The ultimate goal is to understand the asymptotic behavior of the escape rate as the radius of the ball tends to zero. In the case of hyperbolic conformal systems this has been addressed by various authors. The conformal maps considered in this book are far more general, and the analysis correspondingly more involved.
The asymptotic existence of escape rates is proved and they are calculated in the context of (finite or infinite) countable alphabets, uniformly contracting conformal graph-directed Markov systems, and in particular, conformal countable alphabet iterated function systems. These results have direct applications to interval maps, rational functions and meromorphic maps.
Towards this goal the authors develop, on a purely symbolic level, a theory of singular perturbations of Perron--Frobenius (transfer) operators associated with countable alphabet subshifts of finite type and Hölder continuous summable potentials. This leads to a fairly full account of the structure of the corresponding open dynamical systems and their associated surviving sets.
Reihe | Lecture Notes in Mathematics |
---|---|
ISBN | 9783319721781 |
Sprache | Englisch |
Erscheinungsdatum | 07.02.2018 |
Genre | Mathematik/Analysis |
Verlag | Springer International Publishing |
Lieferzeit | Lieferbar in 6 Tagen |
Herstellerangaben | Anzeigen Springer Nature Customer Service Center GmbH ProductSafety@springernature.com |
Wie gefällt Ihnen unser Shop?