Ideals and Reality

Projective Modules and Number of Generators of Ideals
336 Seiten, Taschenbuch
€ 109.99
-
+
Lieferbar in 6 Werktagen

Bitte haben Sie einen Moment Geduld, wir legen Ihr Produkt in den Warenkorb.

Mehr Informationen
Reihe Springer Monographs in Mathematics
ISBN 9783642061950
Sprache Englisch
Erscheinungsdatum 21.10.2010
Genre Mathematik/Arithmetik, Algebra
Verlag Springer Berlin
LieferzeitLieferbar in 6 Werktagen
HerstellerangabenAnzeigen
Springer Nature Customer Service Center GmbH
ProductSafety@springernature.com
Unsere Prinzipien
  • ✔ kostenlose Lieferung innerhalb Österreichs ab € 35,–
  • ✔ über 1,5 Mio. Bücher, DVDs & CDs im Angebot
  • ✔ alle FALTER-Produkte und Abos, nur hier!
  • ✔ hohe Sicherheit durch SSL-Verschlüsselung (RSA 4096 bit)
  • ✔ keine Weitergabe personenbezogener Daten an Dritte
  • ✔ als 100% österreichisches Unternehmen liefern wir innerhalb Österreichs mit der Österreichischen Post
Kurzbeschreibung des Verlags

Besides giving an introduction to Commutative Algebra - the theory of c- mutative rings - this book is devoted to the study of projective modules and the minimal number of generators of modules and ideals. The notion of a module over a ring R is a generalization of that of a vector space over a field k. The axioms are identical. But whereas every vector space possesses a basis, a module need not always have one. Modules possessing a basis are called free. So a finitely generated free R-module is of the form Rn for some n E IN, equipped with the usual operations. A module is called p- jective, iff it is a direct summand of a free one. Especially a finitely generated R-module P is projective iff there is an R-module Q with P @ Q S Rn for some n. Remarkably enough there do exist nonfree projective modules. Even there are nonfree P such that P @ Rm S Rn for some m and n. Modules P having the latter property are called stably free. On the other hand there are many rings, all of whose projective modules are free, e. g. local rings and principal ideal domains. (A commutative ring is called local iff it has exactly one maximal ideal. ) For two decades it was a challenging problem whether every projective module over the polynomial ring k[X1,. . .

Mehr Informationen
Reihe Springer Monographs in Mathematics
ISBN 9783642061950
Sprache Englisch
Erscheinungsdatum 21.10.2010
Genre Mathematik/Arithmetik, Algebra
Verlag Springer Berlin
LieferzeitLieferbar in 6 Werktagen
HerstellerangabenAnzeigen
Springer Nature Customer Service Center GmbH
ProductSafety@springernature.com
Unsere Prinzipien
  • ✔ kostenlose Lieferung innerhalb Österreichs ab € 35,–
  • ✔ über 1,5 Mio. Bücher, DVDs & CDs im Angebot
  • ✔ alle FALTER-Produkte und Abos, nur hier!
  • ✔ hohe Sicherheit durch SSL-Verschlüsselung (RSA 4096 bit)
  • ✔ keine Weitergabe personenbezogener Daten an Dritte
  • ✔ als 100% österreichisches Unternehmen liefern wir innerhalb Österreichs mit der Österreichischen Post