dpunkt.verlag GmbH Wieblinger Weg 17 | DE-69123 Heidelberg niethammer@dpunkt.de
Unsere Prinzipien
✔ kostenlose Lieferung innerhalb Österreichs ab € 35,–
✔ über 1,5 Mio. Bücher, DVDs & CDs im Angebot
✔ alle FALTER-Produkte und Abos, nur hier!
✔ hohe Sicherheit durch SSL-Verschlüsselung (RSA 4096 bit)
✔ keine Weitergabe personenbezogener Daten an Dritte
✔ als 100% österreichisches Unternehmen liefern wir innerhalb Österreichs mit der Österreichischen Post
Kurzbeschreibung des Verlags
Der umfassende Leitfaden für das Managen von Data-Science-Projekten für Studium und Beruf
Themenspektrum: Designen von Projekten, Datenverarbeitung, Analysemethoden, Rolle und Aufgaben von Data Science Manager:innen, Kommunikation mit Stakeholdern, Automatisierung, MLOps, Governance
Inklusive konkreter Toolsets wie z.B. Softwarepakete, Checklisten, Projekt-Canvases sowie Übersichten über bewährte Methoden
Die Autoren sind Professoren für Data Science bzw. Data Science Management an der Digital Business University of Applied Sciences und Startup-Gründer
Viele Data-Science-Vorhaben scheitern an organisatorischen Hürden: Oftmals ist die Rolle des Managements in diesen Projekten nicht klar definiert, zudem gibt es unterschiedliche Vorstellungen, wie gutes Projektmanagement für Data-Science-Produkte aussehen muss.
Dieser praxisorientierte Leitfaden unterstützt Sie beim erfolgreichen Management von Data-Science-Projekten jeder Größe. Sie erfahren zunächst, wie Datenanalysen durchgeführt werden und welche Tools hierfür infrage kommen. Marcel Hebing und Martin Manhembué zeigen dann Wege auf, wie Sie Projekte entlang des Data-Science-Lifecycles planen und eine datengetriebene Organisationskultur implementieren. Dabei wird die Rolle von Data-Science-Managerinnen und -Managern im Kontext eines modernen Leaderships beleuchtet und der Aufbau von Datenanalyse-Teams beschrieben. Jeder Themenbereich wird ergänzt durch Hands-on-Kapitel, die Toolsets und Checklisten für die Umsetzung in die Praxis enthalten.
Themen des Buchs:
Data-Science-Grundlagen: Designen von Projekten, Datenformate und Datenbanken, Datenaufbereitung, Analysemethoden aus Statistik und Machine Learning
Management von Data-Science-Projekten: Grundlagen des Projektmanagements, typische Fallstricke, Rolle und Aufgaben des Managements, Data-Science-Teams, Servant und Agile Leadership, Kommunikation mit Stakeholdern
Infrastruktur und Architektur: Automatisierung, IT-Infrastruktur, Data-Science-Architekturen, DevOps und MLOps
Governance und Data-driven Culture: Digitale Transformation, Implementierung von Data Science im Unternehmen, Sicherheit und Datenschutz, New Work, Recruiting