Moving Target Defense Based on Artificial Intelligence

110 Seiten, Taschenbuch
€ 54,99
-
+
Lieferung in 2-5 Werktagen

Bitte haben Sie einen Moment Geduld, wir legen Ihr Produkt in den Warenkorb.

Mehr Informationen
Reihe SpringerBriefs in Computer Science
ISBN 9789819506149
Sprache Englisch
Erscheinungsdatum 02.10.2025
Genre Informatik, EDV/Informatik
Verlag Springer Singapore
LieferzeitLieferung in 2-5 Werktagen
HerstellerangabenAnzeigen
Springer Nature Customer Service Center GmbH
Europaplatz 3 | DE-69115 Heidelberg
ProductSafety@springernature.com
Unsere Prinzipien
  • ✔ kostenlose Lieferung innerhalb Österreichs ab € 35,–
  • ✔ über 1,5 Mio. Bücher, DVDs & CDs im Angebot
  • ✔ alle FALTER-Produkte und Abos, nur hier!
  • ✔ hohe Sicherheit durch SSL-Verschlüsselung (RSA 4096 bit)
  • ✔ keine Weitergabe personenbezogener Daten an Dritte
  • ✔ als 100% österreichisches Unternehmen liefern wir innerhalb Österreichs mit der Österreichischen Post
Kurzbeschreibung des Verlags


Moving Target Defense (MTD) has been proposed as an innovative defense framework, which aims to introduce the dynamics, diversity and randomization into static network by the shuffling, heterogeneity and redundancy. It is born to solve the problem that traditional security solutions respond and defend against security threats after attacks occurrence, which will lead to the defender always having disadvantages in attack-defense confrontation. This book explores the challenges and solutions related to moving target defense in the cloud-edge-terminal networks.



This book fills this gap by providing a comprehensive and detailed approach to designing intelligent MTD frameworks for cloud-edge-terminal networks. It is essential reading for researchers and professionals in network security and artificial intelligence who seek innovative defense solutions.



The book is organized into 6 chapters, each addressing a key area of MTD and its integration with Artificial Intelligence. Chapter 1 introduces the fundamental concepts of MTD, security challenges in cloud-edge-terminal networks, and the role of artificial intelligence in enhancing MTD. Chapter 2 delves into host address mutation based on advantage actor-critic approach. Chapter 3 proposes a collaborative mutation-based MTD based on hierarchical reinforcement learning. Chapter 4 presents roadside units configuration mutation based on proximal policy optimization approach. Chapter 5 explores route mutation based on multiagent reinforcement learning. Chapter 6 provides a summary of insights and lessons learned throughout the book and outlines future research directions in MTD.


Mehr Informationen
Reihe SpringerBriefs in Computer Science
ISBN 9789819506149
Sprache Englisch
Erscheinungsdatum 02.10.2025
Genre Informatik, EDV/Informatik
Verlag Springer Singapore
LieferzeitLieferung in 2-5 Werktagen
HerstellerangabenAnzeigen
Springer Nature Customer Service Center GmbH
Europaplatz 3 | DE-69115 Heidelberg
ProductSafety@springernature.com
Unsere Prinzipien
  • ✔ kostenlose Lieferung innerhalb Österreichs ab € 35,–
  • ✔ über 1,5 Mio. Bücher, DVDs & CDs im Angebot
  • ✔ alle FALTER-Produkte und Abos, nur hier!
  • ✔ hohe Sicherheit durch SSL-Verschlüsselung (RSA 4096 bit)
  • ✔ keine Weitergabe personenbezogener Daten an Dritte
  • ✔ als 100% österreichisches Unternehmen liefern wir innerhalb Österreichs mit der Österreichischen Post