High Energy Efficiency Neural Network Processor with Combined Digital and Computing-in-Memory Architecture

118 Seiten, Hardcover
€ 175.99
-
+
Lieferbar in 11 Tagen

Bitte haben Sie einen Moment Geduld, wir legen Ihr Produkt in den Warenkorb.

Mehr Informationen
Reihe Springer Theses
ISBN 9789819734764
Sprache Englisch
Erscheinungsdatum 02.08.2024
Genre Technik/Elektronik, Elektrotechnik, Nachrichtentechnik
Verlag Springer Singapore
LieferzeitLieferbar in 11 Tagen
HerstellerangabenAnzeigen
Springer Nature Customer Service Center GmbH
ProductSafety@springernature.com
Unsere Prinzipien
  • ✔ kostenlose Lieferung innerhalb Österreichs ab € 35,–
  • ✔ über 1,5 Mio. Bücher, DVDs & CDs im Angebot
  • ✔ alle FALTER-Produkte und Abos, nur hier!
  • ✔ hohe Sicherheit durch SSL-Verschlüsselung (RSA 4096 bit)
  • ✔ keine Weitergabe personenbezogener Daten an Dritte
  • ✔ als 100% österreichisches Unternehmen liefern wir innerhalb Österreichs mit der Österreichischen Post
Kurzbeschreibung des Verlags


Neural network (NN) algorithms are driving the rapid development of modern artificial intelligence (AI). The energy-efficient NN processor has become an urgent requirement for the practical NN applications on widespread low-power AI devices. To address this challenge, this dissertation investigates pure-digital and digital computing-in-memory (digital-CIM) solutions and carries out four major studies.



For pure-digital NN processors, this book analyses the insufficient data reuse in conventional architectures and proposes a kernel-optimized NN processor. This dissertation adopts a structural frequency-domain compression algorithm, named CirCNN. The fabricated processor shows 8.1x/4.2x area/energy efficiency compared to the state-of-the-art NN processor. For digital-CIM NN processors, this dissertation combines the flexibility of digital circuits with the high energy efficiency of CIM. The fabricated CIM processor validates the sparsity improvement of the CIM architecture for the first time. This dissertation further designs a processor that considers the weight updating problem on the CIM architecture for the first time.



This dissertation demonstrates that the combination of digital and CIM circuits is a promising technical route for an energy-efficient NN processor, which can promote the large-scale application of low-power AI devices.



 


Mehr Informationen
Reihe Springer Theses
ISBN 9789819734764
Sprache Englisch
Erscheinungsdatum 02.08.2024
Genre Technik/Elektronik, Elektrotechnik, Nachrichtentechnik
Verlag Springer Singapore
LieferzeitLieferbar in 11 Tagen
HerstellerangabenAnzeigen
Springer Nature Customer Service Center GmbH
ProductSafety@springernature.com
Unsere Prinzipien
  • ✔ kostenlose Lieferung innerhalb Österreichs ab € 35,–
  • ✔ über 1,5 Mio. Bücher, DVDs & CDs im Angebot
  • ✔ alle FALTER-Produkte und Abos, nur hier!
  • ✔ hohe Sicherheit durch SSL-Verschlüsselung (RSA 4096 bit)
  • ✔ keine Weitergabe personenbezogener Daten an Dritte
  • ✔ als 100% österreichisches Unternehmen liefern wir innerhalb Österreichs mit der Österreichischen Post